企业数据分类分级方法、标准及应用


1.数据分类分级概念及挑战
根据《GB/T 38667-2020 信息技术-大数据-数据分类指南》的定义,数据分类是根据数据的属性或特征,按照一定的原则和方法进行区分和归类,以便更好地管理和使用数据。数据分类不存在唯一的分类方式,会依据企业的管理目标、保护措施、分类维度等形成多种不同的分类体系。
数据分类是数据资产管理的第一步。不论是对数据资产进行编目、标准化,还是数据的确权、管理,或是提供数据资产服务,进行有效的数据分类都是其首要任务。数据分类更多是从业务角度或数据管理的方向考量的,包括行业维度、业务领域维度、数据来源维度、共享维度、数据开放维度等。同时,根据这些维度,将具有相同属性或特征的数据,按照一定的原则和方法进行归类。
数据分级则是按数据的重要性和影响程度区分等级,确保数据得到与其重要性和影响程度相适应的级别保护。影响对象一般是三类对象,分别是国家安全和社会公共利益、企业利益(包括业务影响、财务影响、声誉影响)、用户利益(用户财产、声誉、生活状态、生理和心理影响)。
企业建议选取影响程度中的最高影响等级为该数据对象的重要敏感程度。同时,数据定级可根据数据的变化进行升级或降级,例如包括数据内容发生变化、数据汇聚融合、国家或行业主管要求等情况引起的数据升降级。数据分级本质上就是数据敏感维度的数据分类。
2.国内已发布的数据分类分级相关标准
在开展分类分级工作时参考最多的标准有如下:
其他标准参考如各类地准、国标、行标:
3.企业数据分类分级实践
在实际落地过程中,通常会把数据分类分级的实施路径总结成为五步:
第一步,咨询调研分析。基于行业相关的监管政策和标准规范,对业务系统、数据资产现状和数据安全现状等进行全面调研分析,从而对企业业务、数据及安全现状做到“心中有数”。
第二步,数据资产梳理。自动化识别数据资产,对数据资产进行梳理打标,构建好数据资产目录和数据资产清单,为企业数据分类分级打好基础。
第三步,数据分类方案。基于数据资产清单进行数据分类体系设计,完成数据分类打标实施。打标实施完之后,再进行分类分级规则调优,提升自动化分类的比例和准确率。
第四步,数据分级方案。先进行数据分级体系设计,接下来进行数据分级的规则调优,尽量提升自动化分级的覆盖率和准确率,降低人工成本,然后是数据等级变更维护机制和工具平台设置。
第五步,数据分类分级全景图。构建数据分类分级清单,实现数据分类分级可视化。同时产出一些数据分类分级运营机制,为数据安全分级保护打好基础,做好准备。
数据分类是指根据数据的属性或特征,按照一定的原则和方法进行区分和归类,并建立起一定的分类体系和排列顺序,以便更好的管理和使用数据的过程。
基于不同的数据属性或特征,对数据采用不同的分类视角,例如有数据管理视角、数据应用视角和国家行业组织视角。
分类的维度可以有很多,包括数据的来源、内容和用途等,有时候可能是多维度的结合,例如,从个人信息的维度,将数据分为个人信息和非个人信息;从业务维度,分为财务数据、业务数据、经营数据等。数据分类示例:

五级数据指对国家安全造成影响,或对公众权益造成严重影响数据。
四级数据指对公众权益造成一般影响,或对个人隐私或企业合法权益造成严重影响,但不影响国家安全数据。例如个人健康生理信息、个人身份鉴别信息等。
三级数据指对公众权益造成轻微影响,或对个人隐私或企业合法权益造成一般影响,但不影响国家安全数据。例如比较常见的个人信息,姓名、身份证,联系方式等。
二级数据指对个人隐私或企业合法权益造成轻微影响,但不影响国家安全、公众权益数据。
一级数据指对个人隐私或企业合法权益不造成影响,或仅造成微弱影响,但不影响国家安全、公众权益数据。

分级原则如下:
合法合规原则:分级应遵循有关法律法规及部门规定要求,优先对国家或行业有专门管理要求的数据进行识别和管理,满足相应的数据安全管理要求。
就高从严原则:数据分级时采用就高不就低的原则进行定级,例如数据集包含多个级别的数据项,按照数据项的最高级别对数据集进行定级。
动态调整原则:数据的级别可能因为多个低敏感的数据聚合提高数据级别,也可能因为脱敏或者过期等原因降低数据级别。
分类分级标准制定只是企业数据分类分级安全管理工作的起点。真正要落实数据分类分级安全要求,需要建立配套的实施流程与工具。确保在不同的业务场景中能够识别并标识出数据的分类与分级,并实施对应的安全措施,例如:在权限申请和数据分享的场景,不同级别的数据采用分级安全控制策略与审批流程;在安全事件处理场景,不同级别的数据的事件定级及响应处理流程有差异等等。

4.敏感数据的分类分级识别与打标

敏感数据规则库的建立是自动化识别的基础能力,规则库采用的技术包括关键字、正则表达式、基于文件属性识别、基于元数据信息的自定义识别、机器学习等。例如:
银行卡号、证件号、手机号,有明确的规则,可以根据正则表达式和算法匹配。
姓名、特殊字段,没有明确信息,可能是任意字符串,可以通过配置关键字来进行匹配。
营业执照、地址、图片等,没有明确规则,可以通过自然语言算法来识别,使用开源算法库。
当然,数据分类分级只是数据安全工作中基础的环节,真正要做好数据安全管理,需要建立相对完整的安全管理与技术体系,才能有效落实数据的分类分级策略,保障数据的安全与合规。
5.数据分类分级保障措施及相关建议


数据分类分级建设思路
各业务部门是数据分类分级执行工作的责任主体,负责本业务领域的数据分类分级执行工作,管控业务数据源。确保数据被准确记录和及时维护,落实数据分类分级管控机制,执行监管数据相关工作。各业务部门及其负责人负责落实数据分类分级有关要求,并协同开展数据分类分级实施工作。
1)数据分类分级工作的开展应具备制度保障,企业应建立数据分类分级工作的相关制度,明确并落实相关工作要求,包括但不限于:
2)数据分类分级的目标和原则;
3)数据分类分级工作涉及的角色、部门及相关职责;
4)数据分类分级的方法和具体要求;
5)数据分类分级的日常管理流程和操作规程,以及分类分级结果的确定、评审、批准、发布和变更机制;
6)数据分类分级管理相关绩效考评和评价机制;
1)站在集团及下属企业两个层面做数据分类;
2)不求大而全,实用为主。主数据、指标数据分类做实;
3)满足一个集团在不同层级人员的共享需求;
4)尽量多一些有影响力的成员单位加入。